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In this paper we analyze the equilibrium limit of the constitutive model for two-phase
granular mixtures introduced in Papalexandris (2004) [13], and develop an algorithm for
its numerical approximation. At, equilibrium, the constitutive model reduces to a strongly
coupled, overdetermined system of quasilinear elliptic partial differential equations with
respect to the pressure and the volume fraction of the solid granular phase. First we carry
a perturbation analysis based on standard hydrostatic-type scaling arguments which
reduces the complexity of the coupling of the equations. The perturbed system is then sup-
plemented by an appropriate compatibility condition which arises from the properties of
the gradient operator. Further, based on the Helmholtz decomposition and Ladyzhens-
kaya’s decomposition theorem, we develop a projection-type, Successive-Over-Relaxation
numerical method. This method is general enough and can be applied to a variety of con-
tinuum models of complex mixtures and mixtures with micro-structure. We also prove
that this method is both stable and consistent hence, under standard assumptions, conver-
gent. The paper concludes with the presentation of representative numerical results.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Two-phase flows of granular mixtures are encountered in numerous industrial and technological applications (mining,
pharmaceutical and process industries, power plants, propulsion, etc.) as well as in agriculture, geophysical processes,
and elsewhere. Because of the wide applicability of these flows, many research efforts have been devoted to their modelling
and simulation; see, for example, [1–8] and references therein. However, despite the long reference list and considerable
progress in this field, our understanding of such flows is still not satisfactory. At present, a general theoretical framework
for the description of granular flows does not exist. In fact, it has been observed that nearly 60% of the transport and storage
capacity of granular materials is lost due to poorly developed theory [9]. Further, due to lack of efficient and robust algo-
rithms, the numerical treatment of the flows of interest has been limited to very special cases.

Typically, the derivation of mathematical models of two-phase granular flows employs either an averaging or a mixture-
theory approach. Both approaches have advantages and drawbacks associated with them. The averaging approach employs
aspects from kinetic theories and is based on modifying the equations of motion of a single constituent to account for the
presence of the other constituents and then averaging these equations over space and/or time, [10,11]. These averages
can be set equal to ensemble averages if the system is ergodic. Its main advantage is that it is a ‘‘first principles”
approach and, therefore, requires a few initial postulates. However, collisions between grains are often modelled, if at all,
. All rights reserved.
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in a rudimentary way. Another drawback of this approach is that the averaging process relies on assumptions whose validity
for the problem in hand is questionable. Examples include the ergodic hypothesis and the assumption that the number of
grains is large enough to lie in the validity range of the law of large numbers.

On the other hand, mixture theories treat the system as a multi-component continuum and adopt a non-equilibrium ther-
modynamic formalism for the derivation of the balance equations for each phase. This is achieved by employing the con-
straints imposed by the entropy inequality law, which in turn enables the derivation of constitutive relations for the
irreversible phenomena that take place, such as, viscosity, heat transfer, phase interactions, etc. This approach has the advan-
tage that it provides a set of governing equations in a straightforward and elegant way. However, this approach has scale-
related limitations stemming from the continuum hypothesis: the size of the grains has to be orders of magnitude smaller
than the size of the flow domain. Further, all limitations and drawbacks of the thermodynamic formalism used for the der-
ivation of the mathematical model carry over to the model itself. The interested reader is referred to [10,12] for self-con-
tained presentations and descriptions of both approaches.

In [13], the second author derived a model for compressible two-phase flows of granular mixtures based on an
extension of the theory of irreversible processes [14,15]. This model can be considered as a two-phase generalization
of the Navier–Stokes–Fourier equations for simple fluids which, in addition, takes into account the fact that granular
materials support shear at equilibrium. More specifically, the model introduces the volume fraction of each phase and
its spatial gradient as independent thermodynamic variables. These variables are related to the micro-structure of the
system and model forces that are developed at the grain level. The Gibbs equation for each phase is then generalized
to include the contributions from these new variables, in the form of reversible work performed by the corresponding
additional forces.

The volume fraction gradients, in particular, are introduced for the description of non-local effects whose macroscopic
manifestation is the presence of shear in the equilibrium. These shear stresses are known to depend on the intergranular
surface area and the interfacial surface. On the other hand, the volume fraction gradient is by definition a measure of the
interfacial area density and is thus, a natural choice for the modelling of such stresses. As a matter of fact, the use of the spa-
tial gradients for the description of non-local effects is an old idea, first introduced by Landau in his theory of phase transi-
tions, [16].

In this paper we present and analyze an algorithm for the numerical approximation of the equilibrium behavior of two-
phase granular mixtures, as predicted by the model in [13]. At equilibrium, this model reduces to a set of overdetermined,
quasilinear elliptic equations in terms of the volume fraction and the pressure of the granular material. We note that the
equilibrium equations admit spatially structured solutions for both the pressure and the volume fraction and, therefore, their
study is far from trivial.

Based on standard hydrostatic-type scaling arguments we first perform a perturbation analysis for the system in hand.
The perturbed system is then supplemented by an appropriate compatibility condition which arises from the cohomologies
of the gradient operator. Subsequently, we design a projection-type, Successive-over-relaxation algorithm for the perturbed
system based on the combination of the Helmholtz decomposition and Ladyzhenskaya’s theorem for the construction of the
orthogonal complement of the Lebesgue-square-integrable solenoidal vector fields.

The main objectives of our work are the following.

(i) To develop a numerical framework for accurately predicting the multi-dimensional structure of two-phase granular
mixtures at equilibrium. To the best of our knowledge, such framework currently does not exist. This numerical frame-
work can also serve as a tool for testing the validity of mathematical models based on mixture theories, such as the
one proposed in [13]. In fact, the accurate prediction of the equilibrium distributions is a necessary, but not sufficient,
condition for every model that aims to describe two-phase flows of granular mixtures.

(ii) To gain physical insight on the equilibrium distribution of immiscible mixtures and on the interplay between the var-
ious forces acting on them at equilibrium. Currently, multi-dimensional numerical results for equilibria of such mix-
tures are available only for very special cases.

(iii) To perform the first step toward the development of efficient numerical methods for flows of granular mixtures. In this
respect it is particularly interesting to study the numerical approximation of the terms describing non-local effects
and relaxation phenomena.

It is important to mention that the proposed numerical method is applicable to other models, different than the equilib-
rium limit of the model in [13]. It can be applied to a whole class of equations that describe equilibria of mixtures and com-
plex fluids. This is because, as will be shown later, the non-classical terms in the momentum equation, such as those
describing non-local effects, are treated numerically as source terms. Thus, despite the fact that the exact form of these
non-classical terms can vary among different models, our method treats them in the same fashion.

This paper is organized as follows. In Section 2 we present the equilibrium equations and we develop the theoretical
framework for the numerical method. In Section 3 the numerical algorithm is presented in detail. Section 4 is devoted to
the stability and consistency analysis. In Section 5 we discuss possible approaches for cases not covered by the perturbation
analysis. Finally, in Section 6, we present some representative results from the numerical experiments that we conducted in
the course of our study. For the sake of completeness and self-containment, the full model of [13] is presented in the
Appendix.
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Throughout this paper we adopt the following, classical, notation.

� X stands for a Lipschitz, convex and bounded domain of Rn; n ¼ 2;3.
� L2ðXÞ; L2;2ðXÞ stands for space of Lebesgue-square-integrable measurable functions-vector fields in X, with corresponding

norm kkL2 ; and kkL2;2 .
� HiðXÞ; i 2 N stands for the Sobolev space of L2ðXÞ-functions whose weak derivatives up to order i belong in L2ðXÞ, with

norm kkHi .
� CiðXÞ is the space of functions which have continuous derivatives up to degree i.
� Hðð0; TÞ : XðXÞÞ, where X;H are Banach spaces, stands for the Bochner space [17] of functions

f : X� ð0; TÞ ! R;

which satisfy the condition

kkfkXðXÞkHð0;TÞ <1:

� Given a function or a vector uðxÞ; kukmax will denote the standard sup-norm i.e.

kukmax ¼ sup
x2X
juðxÞj:

Moreover, given a matrix A 2 RN�M kAk1 will correspond to the norm defined by the relation

kAk1 ¼ max
16i6N

XM

j¼1

jAijj:

� n will denote the unit normal vector field in the boundary of the domain of our interest. Since the domain of our interest
will be always assumed to be Lipschitz, we will not have existence problems for n.
� The ‘‘hat” symbol ‘^’ over a variable will denote that the variable is in dimensional form. Variables without the ‘‘hat” sym-

bol are understood to be in non-dimensional form.

Finally, we adopt the following index convention throughout this paper. The index ‘‘s” stands for the solid phase, i.e., the
granular material, while the index ‘‘f” stands for the fluid phase.

2. The equilibrium equations

Let us assume that we are given a saturated mixture of an isotropic granular material and a fluid, in the domain X. Fur-
thermore, we assume absence of chemical reactions and phase changes.

The model derived in [13] introduces the volume fractions and their spatial gradients as independent intensive thermo-
dynamic variables. The use of the volume fraction as a thermodynamic variable is standard in the framework of multi-com-
ponent flows. Its usual interpretation as a concentration parameter is that ‘‘the mixture is assumed to consist of two
coexisting continua”. However, this interpretation is misleading and unsatisfactory from the physical point of view because
it is obviously invalid at the mesoscopic (grain) level, as a consequence of the fact that granular materials do not exhibit a
scale segregation. In fact, in many granular mixtures, even the naked eye can observe the phase separation and determine if a
given point in space is occupied by one phase or the other. Thus, the usual averaging approaches for its definition fail, since
the limit does not exist.

For this reason, in our point of view, it is more appropriate to interpret the volume fraction as the probability of finding
one phase or the other in a given volume (measurable set) in space and at a given time. This interpretation naturally leads to
the following formal definition of the volume fraction, proposed by Goodman and Cowin [1],

Definition 2.0.1. Let lðxÞ stand for the natural Lebesgue measure in X with corresponding r-algebra S. Define the measure
lsðxÞ as follows: for any Lebesgue measurable set A � X,
lsðAÞ ¼
R

A 1sdlðxÞ
lðAÞ ;
where 1s is the indicator function for the solid phase. lsðxÞ is absolutely continuous with respect to lðxÞ and, therefore, by
the Radon–Nikodym theorem, 9/ 2 L1ðXÞ such as
lsðAÞ ¼
Z

A
/sðxÞ dlðxÞ; 8A 2 S:
The normalized (probability) density function /s is defined as the volume fraction of the granular material.

Under the above definition of the volume fraction as a probability density function, the so-called ‘‘coexistence of the two
phases” admits a probabilistic (or measure-theoretic) interpretation. This interpretation is both physically meaningful and
consistent with the measure-theoretic framework of thermodynamics. Definition 2.0.1 describes a stationary probability
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distribution. The evolution of the dynamical system, i.e, the system of PDEs, that governs the behavior of the flow of the gran-
ular mixture, corresponds to the one-parameter family of distributions f/sðtÞg

1
t¼tin

, where tin is the initial time of the flow.
Then, f/sðtÞg

1
t¼tin

is the evolution of densities and it is generally given by a non-linear Markov operator. Therefore, the volume
fraction is well-posed as a spatio-temporal distribution.

It is worth mentioning that the measure-theoretic interpretation of the volume fraction does not play a role in the devel-
opment of the proposed numerical method. However, this interpretation of the volume fraction is important not only from
the physical but also from the mathematical points of view. For example, the fact that an equation admits solutions that are
Radon–Nikodym densities has implications in the derivation of existence and regularity results for these equations.

Finally, we assume throughout the paper that the volume fractions of the two phases /s;/f are uniformly bounded away
from zero. This assumption is made because the passing to the single-phase equations is highly singular and beyond the
scope of the present study.

At equilibrium, the temperatures of the two phases bT s; bT f are equal and uniform, the velocities of the two phases are zero
everywhere, and all the terms in the model that describe dissipative processes are zero. Under the assumption that the fluid
phase behaves like a simple Newtonian fluid, the mathematical model in [13], see Appendix, at equilibrium reduces to
brððp̂s � p̂f Þ/sÞ ¼ � br � ðbCs

br/s � br/sÞ � /sðq̂s � q̂f Þĝ; ð1Þbrp̂f ¼ �q̂f ĝ; ð2Þ
p̂s � p̂f ¼ b̂s � br � ðbCs

br/sÞ; ð3Þ
where p̂i; q̂i;/i; i ¼ s; f , stand for the pressure, density, and volume fraction of the ith phase, respectively, and ĝ is the accel-
eration due to gravity.

Eqs. (1) and (2) result from the momentum equations for the solid and fluid phase, respectively, and express the balance
of forces acting on each phase at equilibrium. Further, Eq. (3) is the equilibrium limit of the compaction equation, which is a
rate equation for the solid volume fraction, see Appendix.

The system (1)–(3) is closed by the saturation condition,
/sðxÞ þ /f ðxÞ ¼ 1 almost everywhere 2 X; ð4Þ
and appropriate equations of state. For the sake of simplicity, we assume that the fluid phase obeys the perfect gas equation
of state,
p̂f ¼ Rf q̂f
bT f ; ð5Þ
where Rf is the gas constant. Additionally, the material of the granular phase is assumed to follow the stiffened gas equation
of state,
p̂s þ bP1 ¼ Rsq̂s
bT s; ð6Þ
where bP1 stands for the ‘‘correction pressure” and Rs is the solid material’s constant. As it will be shown later, the detailed
expression of the equation of state for the constituents of the mixture does not play a role in the derivation of the numerical
method.

Further, in the system (1)–(3), the variable b̂s stands for the so-called configuration pressure [1] and represents the con-
tact forces that are developed between granular grains. Also, the expression inside the divergence term in (1) that contains Ĉs

represents an additional stress tensor due to non-local effects associated with the micro-structure of the granular material.
The presence of these additional stresses is a manifestation of the fact that granular materials can support shear at equilib-
rium. Henceforth, this stress tensor is referred to as the residual stress tensor,
r̂ ¼ bCs
br/s � br/s: ð7Þ
The quantities b̂s and bCs are defined via the granular material’s Helmholtz free energy ŵs as follows,
b̂s ¼ q̂s/s
@ŵs

@/s
; bCs ¼ 2q̂s/s

@ŵs

@ð br/s � br/sÞ
: ð8Þ
This definition of b̂s and bCs suggests the following decomposition of ŵs,
ŵs ¼ ŵp
s þ ŵc

p; ð9Þ
where ŵp
s is the free energy of the pure material that the grains consist of, and ŵc

s is the remaining part. Therefore, ŵp
s is inde-

pendent of /s, whereas ŵc
s is associated with compaction and rearrangement of interfacial area density.

As with all equations of state, the exact functional form of ŵc
s is material dependent and has to be confirmed experimen-

tally. However, and to the best of our knowledge, detailed experimental measurements of the compaction free energy in a
variety of physical conditions currently do not exist in the literature. For this reason, researchers in the field have considered
various ad hoc functional forms in the past. Nonetheless, every proposed expression for ŵc

s must satisfy the convexity
requirements for the stability of thermodynamic equilibria.
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In our study we assume that ŵc
s does not depend on the solid material’s pressure and density; see also the discussion in

[4]. Further, and by virtue of the fact that bCs is the coefficient of the elliptic operator in Eq. (3), we require that ŵc
s is such that

(i) bCs and b̂ are bounded, and (ii) bCs is strictly positive almost everywhere in X. If these requirements are satisfied, the ellip-
ticity of the system is guaranteed, see Section 2.1.

In this article we choose ŵc
s to be a simple convex function,
ŵc
s ¼

1
2

k̂1/
2
s þ k̂2ð br/sÞ

2
� �

; ð10Þ
where k̂1; k̂2 P 0 are constants related to the granular medium under study. It can be easily verified that, by virtue of the
strict positivity of /s, this choice of ŵc

s satisfies the above requirements. However, it is important to mention that all theo-
retical results and the numerical method presented in this article hold for all functional forms of ŵc

s that satisfy the above
requirements

Combining Eqs. (8) and (10) yields the following analytical expressions,
b̂s ¼ k̂1q̂s/
2
s ;

bCs ¼ k̂2q̂s/s: ð11Þ
Under this choice the convexity criteria of stability of thermodynamic equilibria, are obviously satisfied. Moreover, two
interesting observations can be made. First, the symmetric residual stress tensor r̂ has the analytical representation,
r̂ ¼
r̂11 r̂12 r̂13

r̂12 r̂22 r̂23

r̂31 r̂32 r̂33

0B@
1CA ¼ k̂2q̂s/s

@/s
@x̂

@/s
@x̂

@/s
@x̂

@/s
@ŷ

@/s
@x̂

@/s
@ẑ

@/s
@x̂

@/s
@ŷ

@/s
@ŷ

@/s
@ŷ

@/s
@ŷ

@/s
@ẑ

@/s
@x̂

@/s
@ẑ

@/s
@ŷ

@/s
@ẑ

@/s
@ẑ

@/s
@ẑ

0BB@
1CCA:
Second, the overall Helmholtz free energy of the system, i.e., the extensive version of ŵc
s ,
bWc
s ¼

Z
X

1
2
q̂s/s k̂1/

2
s þ k̂2j br/sj

2
� �

dx̂ ð12Þ
is a special case of the well-known Ginzburg–Landau energy functional that is often used in statistical physics. It also coin-
cides with the weighted H1ðXÞ-norm of /s which naturally arises as the energy norm in many physical problems.

At this point, it is worth mentioning that experimental studies on granular materials suggest that there is a critical value
/c such that for /s > /c shearing of the material causes expansion, while for /s < /c it causes contraction [2]. Intuitively, /c is
the critical value of the solid volume fraction below which the grains are not expected to be in contact. This implies that the
configuration pressure b̂s should be zero, or generally negligible, for /s < /c . The value of /c depends on the geometries and
size distribution of the solid particles. Therefore, the accurate calculation of this value constitutes a complicated topological
problem. Nonetheless, for the simplest possible case, uniform spherical particles, a good estimate is /c � 0:52. This number
arises as the solution of the well-known inverse sphere packing problem in an equidistant lattice. It follows that a more real-
istic constitutive relation for the configuration pressure b̂s would be the following,
b̂s ¼
k̂1q̂sð/s � /cÞ

2
; /s P /c;

0; elsewhere:

(

We remark, however, that since b̂s appears only as a source term in (3), its precise functional form has no impact in our

analysis and algorithm development, for as long as b̂s remains bounded. Therefore, and for the sake of simplicity, we will
assume that b̂s is given by (11), unless otherwise stated.

Further, as regards the system of equations in hand, we observe that the solid phase density is a function of the solid pres-
sure only, q̂s ¼ Fðp̂sÞ, because at equilibrium the temperature is constant and uniform. This implies that the only unknowns
in the equilibrium equations are the solid volume fraction /s and the phasial pressures p̂f ; p̂s. However, the distribution of the
fluid pressure p̂f can be written in analytic form after straightforward integration of Eq. (2),
p̂f ¼ p̂0e
� jgj

Rf
bT ẑ

; ð13Þ
where p̂0 is the fluid pressure at the ground level ẑ ¼ 0, and jgj is the amplitude of the gravity vector g.
Next, we introduce the difference of the phasial pressures p̂,
p̂ ¼ p̂s � p̂f ¼ p̂s � p̂0e
� jgj

Rf
bT ẑ

ð14Þ
and rewrite the equilibrium equations as
brðp̂/sÞ ¼ � br � ðk̂2q̂s/s
br/s � br/sÞ � /sðq̂s � q̂f Þĝ; ð15Þ

p̂ ¼ k̂1q̂s/
2
s � br � ðk̂2q̂s/s

br/sÞ: ð16Þ
This system has to be solved for /s and p̂. Once p̂ is known, the solid pressure p̂s is calculated via (13) and (14). It is useful
to remark that since p̂ is merely the difference of the phasial pressures, it is not subject to any positivity constraint.
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2.1. Ellipticity

Henceforth, we limit ourselves to n ¼ 2, i.e., we are going to study the two-dimensional problem in the XZ-plane, while
taking into account the presence of gravitational forces. Nonetheless, the analysis can be applied to the three-dimensional
case too, after certain minor modifications.

First, we observe that Eqs. (15) and (16) are quasilinear both in terms of /s and in terms of p̂. This follows directly from the
expressions of b̂s and Cs in (8) and, in particular, from the independence of b̂s and bCs on br/s. Next, assuming that p̂ is given
as a source term, we identify in (16) the classical quasilinear modified Helmholtz equation in terms of the volume fraction /s.
The required ellipticity follows if we observe that bCs, which is also the coefficient of the elliptic operator in (16), is by def-
inition non-negative and uniformly bounded. Thus, Eq. (16) is elliptic with respect to /s. In order to show that the vector Eq.
(15) is elliptic, we first introduce the decomposition
br � ðk̂2q̂s/s

br/s � br/sÞ ¼ br � ðk̂2q̂s/s
br/sÞ � br/s þ k̂2q̂s/sHð/sÞ br/s;
where Hð/sÞ stands for the Hessian matrix of /s. Applying this decomposition to (15) and further assuming that @/s=@x̂–0
and @/s=@ẑ–0, we arrive in the following system of equations,
p̂þ /s
@p̂=@x̂
@/s=@x̂

þ br � ðk̂2q̂s/s
br/sÞ þ k̂2q̂s/s

@2/s

@x̂2 þ
@2/s

@x̂@ẑ

 !
¼ 0;

p̂þ /s
@p̂=@ẑ
@/s=@ẑ

þ br � ðk̂2q̂s/s
br/sÞ þ k̂2q̂s/s

@2/s

@ẑ2
þ @

2/s

@x̂@ẑ

 !
¼ �/sðq̂s � q̂f Þĝ

@/s=@ẑ
:

Under the same reasoning as above for Eq. (16), the resulting system is elliptic in terms of /s. Therefore, given p̂ 2 L2ðXÞ, it
follows from the convexity of the domain and the standard regularity lifting theorems that, whenever a solution /s exists, it
belongs to the Sobolev space HiðXÞ; i P 1 [18]. This smoothing result is not a priori obvious in equations describing equilibria
of mixtures because of the definition of the volume fraction as an L1ðXÞ density, see Definition 2.0.1.

Further, we observe the presence of cqs in the coefficients inside the differential operators of the system (15) and (16). But
since cqs and p̂ are functionally dependent via the equation of state for the solid phase (6), then p̂ enters explicitly the expres-
sion of the coefficients of the differential operators of the system. Thus, the system (15) and (16) is strongly coupled. Fur-
thermore, this strong coupling is present even with the simplest possible equation of state for the solid phase, that of a
stiffened gas. It is therefore, expected that more complicated equations of state will increase the complexity of the coupling.

In order to overcome the coupling that arises from the presence of the pressure p̂ in the coefficients of the differential
operators, we perform a perturbation analysis of the system (15) and (16), guided by standard scaling arguments of hydro-
statics. Besides its usefulness for numerical purposes, this analysis provides physical insight on the relative contribution of
each force to the equilibrium configuration of the mixtures of interest.

2.2. Perturbation analysis

First we write the system of Eqs. (15) and (16) in non-dimensional form. To this extent, we use the fluid pressure p̂0, and
the fluid density q̂0, at ground level as reference values. Thus,
p̂s ¼ p̂0ps; p̂g ¼ p̂0pg ;
bP1 ¼ p̂0P1; ð17Þ

q̂s ¼ q̂0qs; q̂g ¼ q̂0qg : ð18Þ
Further, the temperature bT is non-dimensionalized via the state equation of the fluid (5)
bT ¼ p̂0

Rf q̂0
T: ð19Þ
Since the temperature is constant at equilibrium, we have T ¼ 1 everywhere.
Moreover, the spatial variables x̂; ẑ are non-dimensionalized by the characteristic length of the domain X; Lref .
x̂ ¼ Lref x; ẑ ¼ Lref z: ð20Þ
It is important to note that Lref is assumed to be orders of magnitude larger than the characteristic length-scale of the grains,
a necessary condition for the continuum hypothesis to be valid. Also, the constants k̂1; k̂2 are non-dimensionalized as follows,
k̂1 ¼ jgjLref k1; k̂2 ¼ jgjL3
ref k2: ð21Þ
Finally, we define the parameter � > 0,
� ¼ jgjLref

p̂0=q̂0
: ð22Þ
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With the above non-dimensionalization, the equilibrium equations are written in the following, non-dimensional, form
rðp/sÞ ¼ ��ðr � ðk2qs/sr/s �r/sÞ þ /sðqs � qf ÞzÞ; ð23Þ
p ¼ �ðk1qs/

2
s �r � ðk2qs/sr/sÞÞ: ð24Þ
The system (23) and (24) is closed with the state equations in non-dimensional form. As mentioned above, for the non-
dimensional temperature at equilibrium we have T ¼ 1 everywhere. Thus, the non-dimensionalized equations of state at
equilibrium read
pf ¼ qf ð25Þ
and
ps ¼ �P1 þ
Rs

Rf
qs: ð26Þ
It is important to stress once again that these particular non-dimensional forms of the state equations are valid only for iso-
thermal conditions, such as the equilibrium distributions considered herein. Finally, from Eq. (13) we obtain directly the ana-
lytical expression of the dimensionless fluid pressure pf ,
pf ¼ e��z: ð27Þ
Next, we observe that the denominator in (22), p̂0=q̂0, is at the order of magnitude of the square of the sound speed of the
fluid phase. In turn, this implies that in most industrial applications and natural phenomena involving granular materials,
the parameter � is very small, i.e., �	 1. In fact, since the denominator in (22) is typically at least as large as the acceleration
of gravity, the parameter �may be at the order of unity only if Lref is very large. Such conditions, however, are highly unlikely
to occur in equilibrium distributions of two-phase mixtures. One possible exception is a mixture whose fluid constituent is a
rarefied gas (small p̂0=q̂0).

Such extreme cases, however, are beyond the scope of the present study. Thus, from now on we assume that � is at least
an order of magnitude smaller than unity. This, in turn, suggests that we can perform a perturbation expansion of the gov-
erning equations in powers of �. Therefore, we assume the following, generally divergent, regular perturbation expansion,
ps ¼ p0
s þ �p1

s þ Oð�2Þ; ð28Þ
pf ¼ p0

f þ �p1
f þ Oð�2Þ; ð29Þ

qs ¼ q0
s þ �q1

s þ Oð�2Þ; ð30Þ
/s ¼ /0

s þ �/
1
s þ Oð�2Þ: ð31Þ
By the uniqueness of the perturbation expansion we can easily obtain the perturbation expansions for the rest of the vari-
ables which appear as products and differences. For p we have
p ¼ p0 þ �p1 þ Oð�2Þ; ð32Þ
where p0 ¼ p0
s � p0

f and p1 ¼ p1
s � p1

f respectively. Similarly for p/s and qs/s we have
p/s ¼ ðp/sÞ
0 þ �ðp/sÞ

1 þ Oð�2Þ; ð33Þ
qs/s ¼ ðqs/sÞ

0 þ �ðqs/sÞ
1 þ Oð�2Þ; ð34Þ
where
ðp/sÞ
0 ¼ p0/0

s ;

ðp/sÞ
1 ¼ p0/1

s þ p1/0
s ;

ðqs/sÞ
0 ¼ q0

s /
0
s ;

ðqs/sÞ
1 ¼ q0

s /
1
s þ q1

s /
0
s :
Using exactly the same approach we can also obtain the expansions for triple products and higher-order products.
Inserting the expansions (28)–(34) to Eqs. (23) and (24), grouping terms of the same order and applying the fundamental

theorem of perturbation theory [19], we obtain the following expressions for the zero-order terms,
p0
f ¼ 1; p0

s ¼ 1; ð35Þ

q0
f ¼ 1; q0

f ¼ ð1þ P1Þ
Rf

Rs
; ð36Þ

/0
s þ /0

f ¼ 1 ð37Þ
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and the following closed system of equations for the first-order terms,
p1
f ¼ �z; ð38Þ

p1 ¼ k1q0
s /0

s

� �2 �r � k2q0
s /

0
sr/0

s

� �
; ð39Þ

r p1/0
s

� �
¼ �r � k2q0

s /
0
sr/0

s �r/0
s

� �
� /0

s q0
s � q0

f

� �
z: ð40Þ
We observe that the coefficients of the differential operators in the perturbed system (39) and (40) do not depend on the
pressure term p1. Instead, only the (constant) zero-order solid density, q0

s , enters the expressions for these coefficients.
Therefore, the perturbation analysis has allowed us to overcome the problematic coupling caused by the presence of p in
the coefficients of the differential operators and in bs, in Eqs. (15) and (16). In other words, the perturbed system (39)
and (40) is a fully decoupled set of PDEs.

Indeed, taking the gradient of (39) and combining with (40) results in the third-order vector equation for /0
s ,
k2q0
s H /0

s

� �
� /0

s q0
s � q0

f

� �
z ¼ �k2q0

s /
0
sr r � r /0

s

� �2
� �� �

þ 3k1q0
s /0

s

� �2r/0
s : ð41Þ
This equation is obviously independent of p1. The study of existence and regularity of (41) is by itself an important step to-
wards a better understanding of the equilibrium behavior of granular mixtures and it will be addressed in a future work.

Further, we note that the saturation condition is preserved by /0
s and /0

f . In addition, /0
s obeys Eq. (40) which has the same

structure as its unperturbed equivalent (16). We therefore conclude that /0
s inherits the properties of /s and, particularly, it is

also a probability density. On the other hand, the higher-order terms of the perturbation expansion of /s are not probability
densities. Since in our study we will be dealing with the perturbed problem, we will refer to /0

s as the ‘‘solid volume fraction”.
Finally, we observe that the decoupling resulted from the perturbation analysis depends only on the denominator of (22),

p̂0=q̂0, being large, under the isothermal conditions of thermodynamic equilibrium. Therefore, the analysis presented above
is independent of the choice of the solid phase equation of state. Indeed, a different choice of state equation would result to
the same perturbed problem, since the pressure p̂s would still be a function of q̂s only.

2.3. Integrability analysis

We observe that the governing system (15) and (16) is overdetermined in spatial dimensions higher than one. Moreover,
the overdeterminacy carries over to the perturbed system (39) and (40) as well. Overdetermined systems of PDEs need to be
supplemented with compatibility conditions which are generally difficult to obtain. At first sight, this might seem odd and
give the impression that the system (15) and (16) and its perturbed version (39) and (40) are ill-posed. However, this is not
the case.

In fact, in our case the overdeterminacy stems from the momentum equation (15) and is explained as follows. The
momentum equation is a vector equation that expresses the balance of forces in each spatial dimension.On the other hand,
at equilibrium it degenerates to an equation for the solid pressure, which is a scalar. However, since the momentum equation
(15) has a clear physical meaning (balance of forces), the compatibility condition for the system (39) and (40) arises naturally
and is remarkably simple.

It is also useful to remark that in mathematical terminology, this means that the system (39) and (40) is supplemented
with a set of compatibility conditions so as the corresponding De Rham complex be exact. (By definition, the De Rham com-
plex is exact if and only if its cohomologies are zero or, in the worst case, are finite dimensional, [20]). In turn, as shown in
[20], exactness of the De Rham complex implies Frobenius integrability and solvability.

In fact, since the system (39) and (40) is decoupled, /0
s can be obtained by solving Eq. (41). This equation is also overde-

termined, but it is integrable by construction. Indeed, the symmetry of the higher-order mixed derivatives is satisfied iden-
tically, as one can verify by simple cross-differentiation. Once /0

s is known, the unknown variable p1 can be obtained via Eq.
(40). We observe that this is an equation of the form
rf ¼ g: ð42Þ
It is well known, see for example [22], that Eq. (40) is integrable if and only if
�r � ðk2q0
s /

0
sr/0

s �r/0
s Þ � /0

s q0
s � q0

f

� �
z 2 KerðcurlÞ: ð43Þ
In other words, Eq. (40) is integrable if and only if its right-hand side is curl-free. This necessary and locally sufficient con-
dition follows formally by the fact that the De Rham complex is locally exact for the gradient operator [22].

To put it simply, condition (43) says that, assuming f to be smooth, the equality of the mixed second-order derivatives of f
must carry over to the right-hand side of (42), thus, resulting in (43). We also remark that since the right-hand side of (40)
stands for the source term g of Eq. (42), its precise functional form does not affect the integrability condition (43).

Next, let us assume that
�r � k2q0
s /

0
sr/0

s �r/0
s

� �
� /0

s q0
s � q0

f

� �
z 2 L2;2ðXÞ ð44Þ
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and recall the well-known Helmholtz decomposition,
L2;2ðXÞ ¼ L2;2
divðXÞ 
 L2;2

curlðXÞ; ð45Þ
where L2;2
divðXÞ is the space of the solenoidal vector fields, i.e., divergence-free vector fields obeying a no-slip condition in the

boundary. Also, in (45), L2;2
curlðXÞ is the orthogonal complement of L2;2

divðXÞ, i.e., the space of curl-free vector fields that can be
expressed in the form of a potential. By virtue of the Helmholtz decomposition and of assumption (44), the integrability con-
dition (43) can be reformulated as
�r � k2q0
s /

0
sr/0

s �r/0
s

� �
� /0

s q0
s � q0

f

� �
z 2 L2;2

curlðXÞ: ð46Þ
Therefore, we have, in a sense, the reciprocal of the Leray projector [23] used in the incompressible Navier–Stokes equations.
The curl-free part of an L2;2-vector field can be uniquely determined, up to an additive constant, via the use of Ladyzhens-
kaya’s theorem [24], which states that:

Theorem 2.3.1 (Ladyzhenskaya’s theorem). Given an L2;2-vector field F in X, its curl-free part is the solution of the Neumann
problem,

Find u 2 H1ðXÞ such that
r � ðruÞ ¼ r � ðFÞ in X;

@u
@n
¼ @F
@n

in @X:
With the use of Ladyzheskaya’s theorem, we apply the divergence operator in all terms of (40) which transforms it to the
following equivalent Poisson equation with Neumann data,
r � r p1/0
s

� �� �
¼ �r � r � k2q0

s /
0
sr/0

s �r/0
s

� �
þ /0

s q0
s � q0

f

� �
z

� �
in X; ð47Þ

r p1/0
s

� �
� n ¼ � r � k2q0

s /
0
sr/0

s �r/0
s

� �
þ /0

s q0
s � q0

f

� �
z

� �
� n in @X: ð48Þ
The main advantage of Ladyzhenskaya’s theorem is that it allows us to overcome the overdeterminacy of the momentum
equation (40) by projecting the right-hand side of (40) to the correct space. Moreover, the new equation is equivalent to the
original one, thus, no information is lost from this projection. Further, it provides compatibility conditions on the boundary
for both the volume fraction /s and the pressure difference p. Finally, it can be extremely useful for numerical purposes be-
cause it transforms the momentum equation to a Poisson equation, which can be easily treated numerically.

At this point it is important to mention that the system in hand admits multiple solutions even after imposing compat-
ibility conditions. This non-uniqueness implies that the two-phase mixtures of interest can support multiple equilibrium dis-
tributions. This, in turn, implies that the equations of the full model that describe the evolution of the mixture towards
equilibrium, see Appendix, constitute a non-ergodic dynamical system since ergodicity is equivalent with the existence
and uniqueness of an equilibrium distribution, [21]. In fact, since an equilibrium distribution is the large-time solution of
the initial-boundary value problem associated with the full model, it depends strongly on the initial conditions.

Further,by Ladyzhenskaya’s theorem and by the existence and uniqueness results for the Neumann problem of the Pois-
son equation [18], it follows that for every smooth solution of (41) /0

s , we obtain only one, up to a constant, equilibrium pres-
sure distribution. This implies that the perturbed problem admits an one-parameter family of solutions. Thus, we arrive to
the important conclusion that non-physical solutions, such as two different pressure distributions corresponding to the same
volume fraction distribution, are not admitted by the system of equations in hand.

3. The numerical method

As mentioned earlier, Ladyzhenskaya’s theorem can be used in the design of a projection method for the computation of
p1 from the momentum equation (40). This implies that /0

s must be computed first. One method to perform the computation
of /0

s is to solve numerically Eq. (41). Nonetheless, this is a third-order vector equation and, therefore, its numerical approx-
imation is cumbersome.

A more efficient and robust method is to compute /0
s from the compaction equation (39), which is the method adopted

herein. This suggests the use of a successive-over-relaxation (SOR) method for the compaction equation (39) via the intro-
duction of a pseudo-temporal derivative and, thus, by the transformation of the original boundary problem to a Cauchy prob-
lem. The desired solution is then the steady-state solution of the initial value problem. The temporally relaxed compaction
equation has the form
@/0
s

@t
¼ p1 � k1q0

s /0
s

� �2 þr � k2q0
s /

0
sr/0

s

� �
: ð49Þ
The temporally relaxed compaction equation (49) is an equation of reaction–diffusion type, i.e., an equation of the form
@u
@t
¼ Mum � up:
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Such equations are often encountered, among other applications, in models of flows through porous media, [25,26].
In our case, the variable u is the solid volume fraction, which is positive and bounded, /0

s 2 ½0;1�. This fact and the con-
vexity of b0

s with respect to /0
s imply that blow-up of the classical-strong solutions is not to be expected. The temporal relax-

ation of /0
s further implies the temporal relaxation of p1 due to the coupling between (39) and (40).

Due to its simplicity and straightforward implementation we employ the second approach for the numerical solution of
the system. Summing up, the proposed numerical method consists of the following major steps,

(i) Predictor–corrector SOR algorithm for the compaction equation (39).
(ii) Predictor–corrector projection method, based on Ladyzhenskaya’s theorem for the momentum equation (40).

The use of a predictor–corrector algorithm is motivated by the fact that such methods are well known for their stability
and robustness in non-linear parabolic equations [27]. Also, such methods have been successfully applied to systems con-
taining stiff reaction diffusion equations [28].

3.1. Spatio-temporal discretization and flow-chart of the algorithm

In order to simplify the algebra, and without loss of generality, we assume that X is discretized via an equidistant mesh
TDx;Dy with mesh size Dx ¼ Dy, i.e., TDx;Dy ¼ TDx. Also, following standard practices, we assume that TDx is equipped with a lex-
icographic ordering relation. Further, TDx is assumed to consist of N �M grid points, N generally being non-equal to M. Fi-
nally, we adopt the following notation convention:

� The superscripts n;nþ 1 denotes the corrected values in times tn ¼ nDt and tnþ1 ¼ ðnþ 1ÞDt respectively.
� The superscript * refers to the predicted value in the time step tn.
� Spatial coordinates are represented as ordered sub-indices fijg.
� All differential operators appearing in the flow-chart of the algorithm are assumed to be finite difference operators.
� Due to the presence of multiple superscripts, we drop the exponents 0 and 1 from /0

s and p1, respectively, without risk of
confusion.

In the proposed algorithm, spatial differential operators are discretized via 2nd-order accurate, central finite differences.
space. Further, temporal differential operators are discretized via forward finite differences, with time step Dt 6 FðDxÞ. As
usual, the function F will be calculated during the stability analysis. The use of forward finite differences reflects the fact that
Eq. (39) is parabolic, hence central or backward differences offers no advantage. Finally, we define the function Resðpi;/iÞ as
follows:
Res pi;/i
s

� �
¼ pi � k1q0

s /i
s

� �2
þr � k2q0

s /
i
sr/i

s

� �
; i ¼ n;nþ 1; �: ð50Þ
The flow-chart of the algorithm is the following.

3.1.1. Prediction step

1. The predicted value /�s of the volume fraction in the ðnþ 1Þth step is computed from the compaction equation as follows:
/�s � /n
s

Dt
¼ Res pn;/n

s

� �
: ð51Þ
2. The predicted value p� is computed by taking the divergence of (40), solving the resulting Neumann problem of the Pois-
son equation for the product ðp/sÞ,
r � ðrðp/sÞ
�Þ ¼ �r � ðr � k2q0

s /
�
sr/�s �r/�s

� �
� /�s q0

s � q0
f

� �
gÞ; ð52Þ

rðp/sÞ
� � n ¼ �r � k2q0

s /
�
sr/�s �r/�s

� �
� /�s q0

s � q0
f

� �
z � n ð53Þ

and then dividing by /�s .

3.1.2. Correction step

1. The corrected value /nþ1
s of the volume fraction in the ðnþ 1Þth step is computed from the compaction equation as

follows:
/nþ1
s � /n

s

Dt
¼ Resðp�;/�s Þ: ð54Þ
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2. The corrected value pnþ1 is computed by taking the divergence of (40), solving the resulting Neumann problem of the
Poisson equation,
r � ðrðp/sÞ
nþ1Þ ¼ �r � r � k2q0

s /
nþ1
s r/nþ1

s �r/nþ1
s

� �
� /nþ1

s q0
s � q0

f

� �
z

� �
; ð55Þ

rðp/sÞ
nþ1 � n ¼ � r � k2q0

s /
nþ1
s r/nþ1

s �r/nþ1
s

� �� �
� n� /nþ1

s q0
s � q0

f

� �
z � n ð56Þ

and then dividing by /nþ1.

4. Stability, consistency and convergence

In this section we present the stability and consistency analysis of the proposed numerical method. The numerical solu-
tions that the method produces in the various time-steps are interpreted as vectors, according to the lexicographic relation
that TDx is equipped with. Moreover, for reasons concerning the invertibility of operators, we will assume that N ¼ M.

Solutions throughout this section are understood as strong solutions with ‘‘sufficient smoothness” in space and time. As
usual, and for the sake of simplicity, the analysis focuses on the pure Cauchy problem with periodic boundary conditions. The
following notation convention for the discrete version of the spatial differential operators is adopted.

� Mð/sÞ denotes the finite difference operator that approximates
r � k2q0
s /sr/s

� �
:

� Að/sÞ denotes the finite difference operator that approximates
r � �r � k2q0
s /sr/s �r/s

� �� �
:

� Bð/Þ denotes the finite difference operator that approximates
r � /s q0
s � q0

f

� �
z

� �
:

Finally, due to the use of the multiples sub-indices in the representation of /s as a vector, we drop the subscript s, i.e.,
/s ¼ /, without the risk of confusion.

4.1. Stability

We begin the stability analysis of the numerical method by proving the following lemmas.

Lemma 4.1.1. Let
F : ½0;1�N
2

� RN2 ! RN2
;

ð/n; pnÞ#/�
denote the non-linear function of the iteration equation
/� ¼ Fð/n;pnÞ;
defined through the spatio-temporal discretization of the temporally relaxed compaction equation (49) . Then, F is globally Lips-
chitz, with Lipschitz constant
KðDx;DtÞ ¼ kDðFÞk1; ð57Þ
where DðFÞ is the first-order Frechet derivative of F.

Proof. The function F, see (51), has the coordinate-wise analytical expression,
/�ij ¼ /n
ij �

Dt
2

k1q0
s /n

ij

� �2
þ Dt

2
pn

ij þ
Dt
2

XN2

k¼1

Mij;kð;/nÞ:
We observe that F is continuously differentiable, as a multi-variable non-linear function of polynomial type and, therefore, it
is locally Lipschitz. To prove that it is globally Lipschitz it suffices to bound the first-order Frechet derivative DðFÞ in the sup-
norm. That is, we have to bound the following quantity
kDðFÞk1 ¼ sup
XN2

k¼1

jJðFÞij;kj
( )

;
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where JðFÞ stands for the Jacobian matrix of F. The analytical expression of the rows of JðFÞ depends only on whether the
specific row corresponds to a grid point whose neighbors involve the boundary. The proof follows if we observe that F is lin-
ear with respect to pn

ij, hence, pn
ij is represented as constant in the Jacobian, and that the non-linear (polynomial) terms, take

values in bounded domains. The Lipschitz constant K due to the continuous differentiability of F reads
KðDðxÞ;DðtÞÞ ¼ kDðFÞk1;
which completes the proof of the lemma. h

Lemma 4.1.2. Assume that /n 2 ½0;1�N
2

. Then, there exists a constant C ¼ CðDðxÞÞ such as
kpn
ijkmax 6 Ck/n

ijkmax:
Proof. The right-hand side of the Poisson equation (48) is approximated by the operators Að/nÞ and Bð/nÞ. In fact, Að/nÞ is a
matrix and each of its elements is a polynomial function of /n in the domain ½0;1�N

2

. By standard continuity arguments there
exists a constant C1 ¼ C1ðDxÞ such that
Ak;lð/nÞ 6 C1k/nkmax 8fk; lg: ð58Þ
Moreover, Að/nÞ is of the form Að/nÞ ¼ 1
Dx4
eAð/nÞ, where eAð/nÞ is an operator which does not depend on Dx. Thus, C2 ¼ 1

Dx4 C1

and (58) becomes
Ak;lð/nÞ 6 C2

Dx4 k/
nkmax 8fk; lg: ð59Þ
Analogously, for Bð/nÞ we have that there exists a constant C3 such as
Bk;lð/nÞ 6
C3

Dx
k/nkmax 8fk; lg: ð60Þ
Now, let L=Dx2 denote the finite difference operator that discretizes the Laplacian in the left hand side of (48). L is a tri-diag-
onal matrix whose element do not depend on Dx. From (59) and (60) we have
kðp/Þnkmax 6 kL
�1k1

C2

Dx2 k/
nkmax:
Since /n, is bounded there exists a constant C4 such as
C4kpnkmax 6 kðp/Þnkmax 6 kL
�1k1

C2

Dx2 þ C3Dx3
� �

k/nkmax;
therefore,
kpnkmax 6 CðDxÞk/nkmax;
where CðDxÞ ¼ kL�1k1
C2
Dx2 þ C3Dx3
� �

and thus the proof is completed. h

We can now prove the stability theorem.

Theorem 4.1.3. Let /n;/�; pn; p� stand for the predicted and corrected solution vectors that are obtained in the nth step. Assume
that /0 2 ½0;1�N

2

, where /0 is the initial condition of the volume fraction. Then if the following condition holds,
KðDðxÞ;DðtÞÞð1þ CðDxÞÞ 6 1; ð61Þ
the numerical method is stable.

Proof. First we show the stability of (51). From Lemmas 4.1.1 and 4.1.2 we have
k/�kmax 6 KðDðxÞ;DðtÞÞð1þ CðDxÞÞk/nkmax:
Now, fix n ¼ 0. By the theorem’s assumption on the initial conditions we have that
k/�kmax 6 KðDðxÞ;DðtÞÞð1þ CðDxÞÞ;
therefore, if
KðDðxÞ;DðtÞÞð1þ CðDxÞÞ 6 1; ð62Þ
we have that k/�kmax 6 1. Since the prediction and correction steps have the same structure, we also have k/1kmax 6 1.
Induction completes the proof for arbitrary n.

The stability of the Poisson equation (48) follows from the stability of the finite difference approximation [29]. h
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Apart from the stability properties of the proposed algorithm it is important to show that the non-linear function F is pos-
itivity preserving, i.e., it maps probability densities to probability densities. To this extent, we first observe that condition
(62) is of the form Dt 6 G1ðDxÞ.

In fact, positivity of /� and, thus of /nþ1, follows by repeating the steps in the proofs of Lemmas 4.1.1 and 4.1.2. In this
case, however, one must drop the absolute values and replace (62) by the similar condition Dt 6 G2ðDxÞ. In other words,
we have shown the following.

Proposition 4.1.4. Assume that Dx are chosen so as G1ðDxÞ and G2ðDxÞ are strictly smaller than one. Further, let GðDxÞ ¼
minfG1ðDxÞ;G2ðDxÞg. Then, if
Dt 6 GðDxÞ; ð63Þ
the function F : ½0;1�N
2

� RN2 ! RN2
is positivity preserving.

Eq. (63) states the condition that must be satisfied by Dt and Dx so as for the numerical method to be stable and positivity
preserving. A rough computation shows that, asymptotically, Eq. (63) has the analytical form Dt 6 Dx minfk1; k2g. The exact
formulation for arbitrary Dx and Dt, throughout this approach is very challenging for two reasons. First, (63) is rational in its
arguments and, therefore, one needs to perform a series of complicated algebraic manipulations in order to transform it into
a more manageable form. Second, calculation of the optimal constants is not straightforward. To see this, we recall that each
row of the matrices A and Bi;j gives rise to non-linear polynomial functions of the /ij arguments. Therefore, the optimal con-
stants for the bounds obtained in Theorem 4.1.3 and Proposition 4.1.4 are the solutions to the corresponding non-linear opti-
mization problems over the unit N2-dimensional cube. However, solving such problems is far from trivial and, in any case,
time-consuming.

In our case it is sufficient to use the asymptotical formulation Dt 6 Dx minfk1; k2g, which corresponds to a feasible solu-
tion of the non-linear optimization problem. This feasible solution can be obtained easily due to the special structure of the
domain.

4.2. Consistency

The consistency of the numerical method is demonstrated in the following theorem.

Theorem 4.2.1. Let us assume the conditions of Theorem 4.1.3, Proposition 4.1.4 and that the condition (63) is satisfied. Further,
we assume that the unique solution pair /ðx; tÞ; pðx; tÞ of the Cauchy problem with initial data /0 ¼ /ðx;0Þ and p0 ¼ pðx;0Þ in the
range ð0; TÞ has the following properties,

1. /ðx; tÞ 2 C3ðð0; TÞ : C3ðXÞÞ,
2. pðx; tÞ 2 C3ðð0; TÞ : L2ðXÞÞ,
3. p/ 2 C3ðð0; TÞ : H2ðXÞÞ.

Then, the numerical method proposed is consistent both in space and in time.

Proof. As usual, we will treat spatial and temporal consistency separately. First we show temporal consistency by assuming
that the method is exact in the spatial level. Assuming that the method is exact in the time step n, the local truncation error
reads in the time-step nþ 1
k/nþ1 � /ðtnþ1Þkmax ¼ k/
nþ1 þ /� � /� � /ðtnþ1Þkmax 6 k/

� � /ðtnþ1Þkmax þ k/
nþ1 � /�kmax: ð64Þ
We will treat the two components of (64) separately.
For the first component of (64), k/� � /ðtnþ1Þkmax, exact Taylor expansion of /ðtnþ1Þ around tn combined with the

definition of /� in (51) gives
k/� � /ðtnþ1Þkmax ¼ /n þ DtResð/n; pnÞ � ð/ðtnÞ þ Dt
@/
@t
ðtnÞ þ Dt2 @

2/

@t2 ðnÞÞ
�����

�����
max

;

where n 2 ðtn; tnþ1Þ. The assumption that the method is exact in the spatial level, and in the nth time-step, implies that
/n þ DtResð/n; pnÞ � ð/ðtnÞ þ Dt
@/
@t
ðtnÞ þ Dt2 @

2/

@t2 ðnÞÞ
�����

�����
max

6 Dt2 @
2/

@t2 ðnÞ
�����

�����
max

: ð65Þ
Since / 2 C3ðð0; TÞ : C3ðXÞÞ it follows that (65) can be bounded by
Dt2 @
2/

@t2 ðnÞ
�����

�����
max

6 Dt2 @2/

@t2

�����
�����

C3ðð0;TÞ:C3ðXÞÞ

¼ OðDt2Þ: ð66Þ
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For the second component of (64) k/nþ1 � /�kmax we have
k/nþ1 � /�kmax ¼ DtkResð/�; p�Þ � Resð/n;pnÞkmax ¼ Dtkk1ðq0
s ð/

�Þ2 � q0
s ð/

nÞ2Þ þ ðp� � pnÞ þMð/�Þ �Mð/nÞkmax

6 Dtðkk1ðq0
s ð/

�Þ2 � q0
s ð/

nÞ2Þkmax þ kðp� � pnÞkmaxÞ þ DtkMð/�Þ �Mð/nÞkmax: ð67Þ
We study the three components of (67) separately. For the component kðp� � pnÞkmax we have,
kððp/Þ� � ðp/ÞnÞkmax ¼ kAð/
nÞ � Að/�Þ þ Bð/nÞ � Bð/�Þkmax 6 kAð/

nÞ � Að/�Þkmax þ kBð/
nÞ � Bð/�Þkmax:
The continuity of the functions Að:; :Þ;Bð:; :Þ and (66) imply that as Dt ! 0 the following holds.
kððp/Þ� � ðp/ÞnÞkmax ! 0:
This, in turn implies that
kðp� � pnÞkmax ! 0:
The rate of consistency follows from the rate of k/� � /nkmax, i.e.,
kðp� � pnÞkmax ¼ OðDt2Þ: ð68Þ
Finally, (66) implies that
kMð/�Þ �Mð/nÞkmax ¼ OðDt2Þ; ð69Þ
kk1ðq0

s ð/
�Þ2 � q0

s ð/
nÞ2Þkmax ¼ OðDt2Þ; ð70Þ
Summing up (68)–(70) we obtain
k/nþ1 � /�kmax ¼ OðDt2Þ; ð71Þ
and therefore, combining (66) and (71) we have
k/nþ1 � /ðtnþ1Þkmax ¼ OðDt2Þ:
Hence, the method is second-order consistent in time. Spatial consistency for /; p/ follows from the standard estimates for
Poisson equations [29]. h

We conclude this section with the convergence corollary.

Corollary 4.2.2. Under the assumptions of Theorems 4.1.3, 4.2.1 and Proposition 4.1.4 the discrete solution pair ð/n; pnÞ produced
by the numerical method, converges to the unique solution pair of the Cauchy problem ð/ðx; tÞ; pðx; tÞÞ in the max-norm as
Dt;Dx! 0.
Proof. The proof follows by the Lax–Richtmyer generalized equivalence principle for quasilinear systems. This, well known,
principle states that stability and consistency imply convergence [30,31]. h
5. Remarks on the unperturbed problem

The numerical method that we propose is formally valid for the perturbed system (39) and (40), i.e., when �	 1. None-
theless, we have also applied the proposed algorithm to the unperturbed problem, in order to study the validity of the per-
turbation expansion derived in Section 2.2. The only modification that the algorithm requires is to update the density of the
solid phase qs, which is not constant. This is performed by solving the solid equation of state for qs (6), immediately after the
computation of the pressure difference p.

Our numerical experiments showed virtually no difference between the solutions of the original system (15) and (16) and
its perturbed version (39) and (40). The agreement of these numerical results provides evidence for the validity of the per-
turbation expansion of Section 2.2.

Further, the numerical experiments showed that when �	 1, the solid density variations predicted by the unperturbed
problem are negligible. This allows the direct application of the proposed method to the unperturbed problem. However,
when � grows larger, the solid density variations are no longer negligible. Also the unperturbed system (15) and (16) is en-
dowed with a different set of compatibility conditions, which are given below. Therefore, the direct application of our
numerical method to the unperturbed (15) and (16) without modification will might lead to incorrect results.

As mentioned earlier, the parameter � is very small in all industrial applications and natural phenomena involving gran-
ular materials that we are aware of. However, the case where � is not small is still interesting from the theoretical point of
view (and possibly from the practical point of view as well, since this type of equations might arise in other areas of physical
sciences). For this reason it is worth discussing possible ways to treat the governing system (15) and (16) numerically when �
is not small.
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It is clear that in this case the perturbation expansion is no longer valid, unless the convergence of the expansion is for-
mally proven. However, if � is neither in the limit range of zero nor at the order of unity (for example, if � ¼ 0:15) it is pos-
sible to extend the perturbation analysis via Padé approximation. This amounts to reconstruct the perturbation expansion as
a series of Padé approximates. Such series are known to successfully approximate the corresponding functions for values of �
in the range 0.1–0.2; see, for example, [32]. Despite the obvious disadvantage of having to compute higher-order terms of the
original perturbation expansion, the proposed numerical method can in principle be applied to the new perturbed problem,
thanks to the constructive definition of the Padé coefficients.

Further, if � ¼ Oð1Þ, then the full, unperturbed, problem has to be considered. In this case, as we mentioned before, the
presence of p̂ in the coefficients of the differential operators results in a strongly coupled system of equations. As a conse-
quence, the momentum equation (15) no longer takes the simple form rf ¼ g and, therefore, the Helmholtz decomposition
(45) is not helpful anymore. Instead, Eq. (15), in two dimensions, has the following form,
@

@x
þ A1ðx; zÞ

� �
f ¼ x1; ð72Þ

@

@z
þ A2ðx; zÞ

� �
f ¼ x2: ð73Þ
Such equations have been used as examples of the classical Frobenius integrability theorem. Their compatibility condition
reads
@

@x
þ A1ðx; zÞ

� �
x2 ¼

@

@z
þ A2ðx; zÞ

� �
x1; ð74Þ
which is the classical commutation relation accounted in Lie theory [33]. This new compatibility condition acts as a con-
straint on (72) and (73), thus taking care of the overdeterminacy problem.

However, the design of an algorithm for the numerical treatment of the new constrained system is much more challeng-
ing. This is because the new compatibility condition, (74), when combined with the Helmholtz decomposition (45), does not
produce a simple condition for the right-hand sides of (72) and (73), contrary to the outcome of the perturbed case, see Eq.
(46). Therefore, the momentum equation can no longer be transformed into an equivalent Poisson equation by simply apply-
ing the divergence operator. In this case, taking the divergence of the momentum equation will give rise to incompatibilities
on the boundary.

A possible approach for the numerical treatment of the unperturbed problem is to simultaneously solve all equations,
including the compatibility condition, via a Newton–Raphson method. However, the implementation of this approach is very
challenging. The main difficulty of this approach comes from the discretization of the momentum equation. If one chooses
one-sided finite differences for the approximation of the gradient operator, then the corresponding linear system is well-
posed; however one order of accuracy is lost. This can be detrimental when the problem involves non-linear, high-order
terms, like the tensor product of the gradients that appears in the expression for the residual stresses. On the other hand,
if one chooses 2nd or higher-order central differences, as is often the case, then the corresponding linear system becomes
ill-posed because the diagonal of the matrix has zeros everywhere. A possible straightforward way to overcome the ill-
posedness of the linear-system is the use of Tikhonov regularization, [34]. This method, roughly speaking, transforms the
linear system in a regularized least-square minimization problem. Further, with this approach certain classical technical dif-
ficulties of the Newton–Raphson method must be resolved, such as the analytic derivation of the corresponding Jacobian
matrix and a judiciously chosen initial guess.
6. Numerical results

The efficiency of the proposed numerical method has been investigated in a series of numerical experiments, part of
which will be presented in this Section. In these numerical experiments we have used a mixture of water and beach sand
as the mixture of reference.
6.1. Set up of the numerical experiments

The first issue that arises in the numerical treatment of equations for granular mixtures is the values of the constants k̂1

and k̂2 in the free energy component ŵc
s ; see Eq. (10). Ideally, for a given granular material, these values should be obtained

experimentally. However, to the best of our knowledge, accurate experimental data for these parameters are not yet avail-
able. For this reason, we resorted in considering values from earlier numerical studies.

In particular, we have used the same physical parameters as the ones given by the authors in [2], who studied numerically
shearing motions of a saturated water-beach sand mixture. These values are k̂1 ¼ 0:02 m2=s2 and k̂2 ¼ 4� 10�8 m4=s2. It
should be mentioned that the authors in [2] did not elaborate on how these values were prescribed. However, they noted
that the acquisition of values for these parameters is problematic. The same values were later adopted in [6] who studied
the same problem as in [2], but with a different constitutive model.
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It should also be noted that the above value of k̂2 is very small. Indeed, a heuristic order of magnitude analysis of the
momentum equation (40) shows that, with this choice of k̂2, the amplitude of the residual stresses r̂ is three to five orders
smaller than that of the gravitational forces /sðq̂s � q̂f Þĝ. For such small values of k̂2, the effect of the residual stresses on
p̂1/0

s is expected to be non-negligible only inside boundary or transition layers. Since the limit k̂2 ! 0 is singular, solutions
of the governing Eqs. (39) and (40), for such small values of k̂2, can also be studied via singular perturbation techniques.

For the sake of completeness, we also note that the extreme case where k̂2 ¼ 0 admits solutions in closed form. This limit
case, however, refers to granular materials that do no support shear at equilibrium and, therefore, has no physical interest.

For our simulations, the beach sand is assumed to obey the stiffened gas equation of state (6) with the correction pressure
equal to bP1 ¼ 108 atm. Further, the water is assumed to behave like a simple Newtonian fluid and, therefore, b̂f ¼ 0, bCf ¼ 0.
Further, the uniform temperature of the mixture bT is set equal to 300 K. The computational domain is a square with sides
equal to L = 0.1 m.

As mentioned in Section 2.2, the water pressure and density at ground level, ẑ ¼ 0 m, are used as reference values. Thus,
p̂0 ¼ 1 atm and q̂0 ¼ 1000 kg= m3. Also, we use the length of the side of the computational domain as characteristic length:
Lref ¼ 0:1 m. With this choice of reference values, the perturbation parameter is � ’ 0:0098. This is in fact a small value, as
required for the validity of the perturbation expansion.
Fig. 2. Pressure difference p̂; k̂1 ¼ 0:02 m2=s2; k̂2 ¼ 4� 10�8 m4=s2.

Fig. 1. Solid volume fraction /0
s ; k̂1 ¼ 0:02 m2=s2; k̂2 ¼ 4� 10�8 m4=s2.



Fig. 3. Residual stress r̂11; k̂1 ¼ 0:02 m2=s2; k̂2 ¼ 4� 10�8 m4=s2.

Fig. 4. Residual stress r̂12; k̂1 ¼ 0:02 m2=s2; k̂2 ¼ 4� 10�8 m4=s2.

Fig. 5. Residual stress r̂22; k̂1 ¼ 0:02 m2=s2; k̂2 ¼ 4� 10�8 m4=s2.
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Attention should be paid to the choice of the initial conditions for /0
s because if the initial profile is too far from a solution

of the system, then the numerical method can experience sufficiently long convergence time. For this reason, we proceed to
construct an initial condition as follows. First, we note that there exists a maximum value of particle packing. This corre-
sponds to the maximum value of the volume fraction in absence of plastic deformations of the grains, which we denote
by /m. As /0

s ! /m, the solid particles are in such strong contact that the solid phase behaves like a rigid body. For spherical
grains, /m corresponds to the solution of the so-called ‘‘minimum packing problem” and is approximately equal to 0.74. Sec-
ond, the volume fraction has the trend to decrease with ẑ due to gravitational forces (beach sand is more dense than water).
This trend should be reflected in the initial profile. Further, the initial condition of /0

s must be positive everywhere.
Motivated by these criteria, we have used profiles of the form
/0
s ðx̂; ẑ;0Þ ¼ 0:74� FðẑÞGðx̂Þ ð75Þ
Fig. 6. Grid-convergence study for the solid volume fraction /0
s .

Fig. 7. Grid convergence study for the pressure difference p̂.
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and perturbations thereof, where FðẑÞ is a decreasing function in ẑ. Simple choices for FðẑÞ and Gðx̂Þ are appropriately scaled
trigonometric functions or second-order polynomials. In our numerical experiments we have made extensive use of the fol-
lowing profile,
/0
s ðx̂; ẑ;0Þ ¼ 0:74�Wx̂ðL� x̂Þ sin

pẑ
2L

� �� �
1þ 0:1 sin

x̂p
L

� �� �
; ð76Þ
where W is a constant of order one.
The boundary values are obtained by evaluating the corresponding initial conditions to the boundary points. This implies

that the boundary conditions of our problem are of Robin type, since we have Dirichlet boundary conditions for the solid
volume fraction /0

s and Neumann boundary conditions for the pressure difference p̂1. However, we must caution the reader
that imposing boundary values for /0

s can be problematic. This is the case with all additional thermodynamic variables, since
such variables are generally not controllable on the boundary [15].

6.2. Representative results and numerical convergence

We now present the results from numerical simulations that correspond to a mixture of beach sand and water whose
parameter values, initial and boundary conditions follow the set-up formulated above.

Fig. 1 shows the equilibrium distribution of the solid volume fraction, /0
s ; when the initial condition is given by (76). It can

be observed that /0
s decreases as ẑ increases, in agreement with expectations. At the top of the domain /0

s has been reduced
Fig. 8. Pressure difference p̂; k̂2 ¼ 4� 10�8 m4=s2.
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to approximately 60% of its value at ground level. This decrease is mainly due to the density differences between the two
phases. Moreover, the convexity of the profile of /0

s implies that the concentration of the granular phase is higher in the
boundaries than in the interior the domain. It can also be observed in Fig. 1 that the profile of /0

s is smooth. This is in agree-
ment with the regularity remarks of Section 2.1 which carry over to the perturbed (39) and (40).

Fig. 2 shows the difference between the solid and gaseous pressures, p̂ ¼ p̂s � p̂f , measured in N=m2. We observe that p̂ is
monotonically decreasing with ẑ, as expected since the right-hand side of (40) is always negative. We also observe the pres-
ence of boundary layers in the top and bottom boundaries of the domain. As mentioned above, the role of the residual stres-
ses are non-negligible inside these layers. However, outside these layers the pressure difference p̂ is dominated by the
gravitational forces. Further, p̂ varies little with x̂, due to the small value of k̂2.

The maximum value of p̂ is equal to, approximately, 100 N/m2, whereas its minimum value is negative and equal to,
approximately, �40 N/m2. In other words, the overall variation of p̂ is at the order of 0.1% of the reference pressure
p̂0 ¼ 1 atm. This fact is in accordance with our assumption that the correction terms in the perturbation expansion of Section
2.2 are small, of order �, with respect to the leading order terms.

Figs. 3–5 show the components of the residual stress tensor r̂. We observe that the magnitudes of its components are very
small: kr̂11k ¼ Oð10�3Þ; kr̂22k ¼ Oð10�3Þ, and kr̂12k ¼ Oð10�4Þ. Therefore, the residual stresses are three to five orders of mag-
nitude smaller than the gravitational forces, in agreement with our estimates above regarding the consequences of the
smallness of k̂2. It is interesting to observe that r̂11 is the largest component of r̂. It increases monotonically with ẑ and
its maximal values occur at the top left and right corners of the domain. By contrast, the behavior of the other normal stress,
Fig. 9. Pressure difference p̂; k̂1 ¼ 0:02 m2=s2.
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r̂22 is different: it is decreasing as ẑ increases and it takes its maximal value in the middle of the bottom boundary. Finally,
the shear stress r̂12 ¼ r̂21 is the smallest component of the residual stress tensor and has the property that it is anti-sym-
metric with respect to the axis x̂ ¼ 0:05 m.

For the case presented here, we have also performed a grid-convergence study. The numerical convergence was tested via
the use of the mesh-dependent l1 norm of the error of the volume fraction /0

s and the pressure difference p̂, respectively. The
mesh-dependent l1 norm of the numerical error is defined as
ErðFÞ ¼ 1
N

XN

i¼1

jfi � Fij; ð77Þ
where N is the number of computational cells, F stands for the exact solution, and f stands for the numerical solution. In ab-
sence of an analytical solution we used as ‘‘exact solution” the numerical result obtained with a very fine grid with
1600 � 1600 points. The four numerical solutions that have been used for the convergence study correspond to grids of
100 � 100, 200 � 200, 400 � 400 and 800 � 800 points respectively.

Figs. 6 and 7 show the results of the grid-convergence study for the variables /0
s and p̂, respectively. It can be directly

observed that numerical convergence is achieved with grid-refinement, thus confirming the theoretical results of Section 4.

6.3. Parametric studies

In the course of our numerical experiments we have performed parametric studies with respect to k̂1 and k̂2. These stud-
ies are a straightforward way of testing the robustness of the proposed numerical method but they also provide insight on
the dependence and sensitivity of the solutions to the values that these parameter take. The results of these parametric stud-
ies are summarized below.

First, we fix k̂2 ¼ 4� 10�8 m4=s2 and let k̂1 vary between 0.002 and 20 m2=s2. Changes in k̂1 translate directly into changes
of the stiffness of the compaction equation (39) but leave (40) unaffected. Our numerical experiments showed that the
changes in the solid volume fraction distribution /0

s are very small, at the order of Oð10�4Þ. Moreover, the variation of k̂1

has virtually no effect on the magnitude and shape of the profile of the residual stresses r̂ij.
However, as Fig. 8(a)–(d) shows, the profile of the pressure difference p̂ is much more sensitive to change of k̂1. First we

observe that the magnitude of p̂ increases with k̂1 Further, as k̂1 increases, the gradients of p̂ in the top and bottom bound-
aries are smoothed out, i.e., the boundary layers become thicker. This implies that the residual stresses play a non-negligible
role everywhere in the domain. Moreover, as k̂1 increases, the variations of p̂ in the x̂ direction become larger. This trend can
be explained by the fact that as k̂1 increases, the configuration pressure b̂s in the compaction equation eventually becomes
dominant over the diffusion term. It is also interesting to note that the monotonic decrease of p̂ in the ẑ direction is essen-
tially unaffected by variations of k̂1. However, the presence of gradients in the x̂ direction results in the appearance of critical
points in the interior of the domain.

We also considered values of k̂1 smaller than 0:002 m2=s2. Our numerical predictions showed that after a certain thresh-
old, around k̂1 ¼ 0:001 m2=s2, there is very little change on the solution profiles. This can be explained by the fact that as the
Fig. 10. Max-plot of residual stress r̂11.
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value of k̂1 gets smaller, so does the configuration pressure b̂s which eventually becomes negligible with respect to the other
terms of the compaction equation.

As regards the parametric study for k̂2, we fix k̂1 ¼ 0:02 m2=s2 and let k̂2 take values in the range 10�8 � 10�4 m4=s2. Sim-
ilarly to the parametric study for k̂1, we observe very small changes in the profile of the solid volume fraction. In particular,
our numerical experiments predict that the changes in /0

s with k̂2 are at the order of 10�4.
However, as Fig. 9(a)–(d), 10–12 show, the pressure difference p̂ and the residual stresses r̂ij are considerably more sen-

sitive to variations of k̂2. In particular, in Fig. 9(a)–(d) we observe that for values of k̂2 larger than approximately 10�6 m4=s2,
the order of magnitude of the pressure difference p̂ increases with k̂2. For values of k̂2 smaller than 10�6 m4=s2, the total var-
iation of p̂ remains at the order of 100 N=m2.

Further, we observe that the above value, k̂2 
 10�6 m4=s2, also acts as a threshold for the behavior of the variation of p̂
with ẑ. Indeed, for values of k̂2 below this threshold, p̂ decreases monotonically with ẑ because the gravitational forces are
larger than the residual stresses r̂ij everywhere in the domain. In contrast, for values of k̂2 above this threshold, the residual
Fig. 11. Max-plot of residual stress r̂12.

Fig. 12. Max-plot of residual stress r̂22.
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stresses can balance out the effect of the gravitational forces, thereby changing the monotonicity of p̂ along the ẑ direction.
Also, as k̂2 increases, so does the thickness of the boundary layers. For k̂2 larger than the above threshold, the boundary layers
disappear in the sense that the residual stresses r̂ij have non-negligible effect everywhere in the domain.

Also, our parametric study indicates that the shapes of the residual stresses r̂ij are largely unaffected by changes of k̂2. (A
similar observation was drawn in the parametric study of k̂1.) Nonetheless, the amplitude of all three residual stresses in-
crease considerably with k̂2, as can be observed in Figs. 10–12. These figures show the variation of the maxima of r̂ij with
k̂2. Nonetheless, these residual stresses remain always at least two order of magnitude smaller than the pressure difference
p̂.

7. Conclusions

In this paper we have presented a theoretical and numerical analysis for the equilibrium limit of the mathematical model
for two-phase granular mixture in [13]. At this limit, the model reduces to a coupled, overdetermined system of quasilinear
elliptic PDEs. However, at equilibrium, the variations of the phasial densities are expected to be small, which allows a per-
turbation analysis and, subsequently, decoupling of the system in hand. The perturbed system is supplemented by a com-
patibility condition which arises naturally and is based on the cohomologies of the gradient operator. Further, we have
developed a projection-type, SOR predictor–corrector algorithm for the numerical treatment of the equations based on
Ladyzhenskaya’s decomposition theorem. As shown herein, the proposed algorithm is both stable and consistent hence, un-
der some standard assumptions, convergent.

We have also conducted a series of numerical experiments by using a water–beach sand mixture as reference. Our
numerical studies showed that the residual stresses, which result from non-local effects related to the micro-structure of
the mixture, lead to the formation of thin transition or boundary layers. These non-local effects are modelled via the intro-
duction of the volume fraction gradient as an independent thermodynamic variable. The introduction of the volume fraction
alone as a thermodynamic variable is not adequate to model such effects which might be important in technological appli-
cations. Overall, our numerical experiments indicated that the equilibrium limit of [13] admits solutions that are, intuitively,
physically correct. This numerical evidence however, can only serve as a preliminary test of the validity of the model in hand.
The crucial validity test is to compare numerical predictions with experimental data.

Our study in the role of the residual stresses and their proper discretization can be useful in the development of numerical
methods for two-phase flows of granular mixtures. However, in the case of flowing mixtures, convective effects and residual
stresses are expected to give rise to moving interfaces and transition layers. Such structures are known to reduce the regu-
larity of the solutions and the accuracy of standard numerical methods used for their approximation. Therefore, they require
the implementation of accurate and robust interface-capturing methods, which is a direction that we intend to pursue next.

As regards other future directions, another natural step forward is the development of an existential theory for the per-
turbed systems (39) and (40). In fact, existence and regularity results must complement the theoretical and numerical study
presented herein for a complete understanding of the equilibrium distributions admitted by the model in hand. To this ex-
tent, as mentioned in Section 2.3, the existence analysis of the perturbed system reduces to the study of the third-order vec-
tor equation (41). The main difficulty is the overdeterminacy that carries over from the set (39) and (40). This requires the
development of a new set of compatibility conditions. However, the fact that Eq. (41) is homogeneous along the x-axis, is
expected to simplify the required analysis.
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Appendix

The model derived in [13] is based on the assumption that a generalized Gibbs equation holds for each phase,
bTi dŝi ¼ dêi �
p̂i

q̂2
i

dq̂i �
b̂i

q̂i/i
d/i �

1
2q̂i/i

Ĉidð br/iÞ
2
; i ¼ s; f : ð78Þ
The balance equations for the fluid phase read
dq̂f /f

dt̂f
þ q̂f /f

br � ûf ¼ 0; ð79Þ

q̂f /f
dûf

dt̂f
þ brðp̂f /f Þ ¼ � br � ð/f

bPv
f Þ � p̂f

br/s � f̂ � q̂f /f ĝ; ð80Þ

q̂f /f
dêf

dt̂f
þ p̂f /f

br � ûf ¼ �/f
bPv

f � bVv
f � br � q̂f þ f̂ � ðûf � ûsÞ � bE; ð81Þ
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whereas the balance equations for the solid phase read
dq̂s/s

dt̂s
þ q̂s/s

br � ûs ¼ 0; ð82Þ

q̂s/s
dûs

dt̂s
þ brðp̂s/sÞ ¼ � brðp̂v

s /sÞ � br � ð/s
bPv

s Þ þ f̂ � q̂s/sĝ; ð83Þ

q̂s/s
dês

dt̂s
þ p̂s/s

br � ûs ¼ �p̂v
s /s

br � ûs � /s
bPv

s � bVv
s �r � q̂s þ bE: ð84Þ
In the above equations, the operator d
dt̂i
¼ @

@ t̂
þ ûi � br stands for the material derivative of the ith phase, and � stands for the

component-wise (Hadamard) product of two tensors.
The quantities p̂v

i and bPv
i result from the natural decomposition of the stress tensor P to a diagonal part and a traceless

deviatoric part
P ¼ �ðp̂i þ p̂v
i ÞIþ bPv

i ; ð85Þ
where p̂i is the classical (hydrostatic) pure-phase pressure. Also, in single-phase flows, p̂v
i is identified with the bulk viscous

pressure. Further, q̂i is the heat conduction vector and bVv
i are the traceless deviatoric parts of the deformation tensorsbV i ¼ 1

2 ð brûi þ ð brûiÞTÞ. Finally, f̂ and bE represent the momentum and heat exchanges between the two phases, respectively.
Combining the balance and Gibbs equations for each phase results in an expression for the entropy production rate of the

overall mixture. The positivity of the entropy production rate, as required by the second thermodynamic law, is then em-
ployed to derive the following constitutive expressions for all terms that describe dissipative processes, including the com-
paction equation. In the linear regime, these terms can be written as products between thermodynamic fluxes Ji and
thermodynamic forces Xk. When off-diagonal terms are ignored i.e., when the couplings between fluxes and forces for i–k
are set to zero [15], then the final result reads,
bE ¼ ĥ
1bT s

� 1bT f

 !
; ð86Þ

p̂v
f ¼

Ĉf

3/f
j br/sj

2 � f̂f
br � ûf ; ð87Þ

p̂v
s ¼

Ĉs

3/s
j br/sj

2 � f̂s
br � ûs; ð88Þ

q̂f ¼ ĵf /f
brðbT�1

f Þ; ð89Þ

q̂s ¼ ĵs/s
brðbT�1

s Þ; ð90Þ

f̂ ¼ p̂f � b̂f � bT f
br � ĈfbT f

br/s

 ! ! br/s þ d̂ðûf � ûsÞ; ð91Þ

P̂v
f ¼

bCf

/f
Uv

s � l̂f
bVv

f ; ð92Þ

bPv
s ¼

bCs

/s
Uv

s � l̂s
bVv

s ; ð93Þ
where Uv
s is defined through the decomposition
r/s �r/s ¼
1
3
jr/sj

2IþUv
s ; ð94Þ
that is, Uv
s is a traceless deviatoric tensor. In the above equations, d̂ and ĥ are the coefficients of interphasial momentum and

heat transfer, respectively, whereas f̂i; l̂i and k̂i denote the coefficients of bulk viscosity, shear viscosity and thermal conduc-
tivity of the ith phase respectively.

If one assumes, as done in this article, that the fluid phase behaves like a simple Newtonian fluid, then b̂f ¼ 0 and bCf ¼ 0.
The model is closed with the compaction equation, which is a rate equation for the solid volume fraction /s,
d/s

dt̂s
¼ l̂�1

c
p̂s � b̂sbT s

� p̂f � b̂fbT f

þ br � ĈsbT s

þ ĈfbT f

 ! br/s

 ! !
; ð95Þ
where l̂�1
c stands for the dynamic compaction coefficient.
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